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Abstract—Elastoplastic analysis of a thin rotating disc shrink-fitted to an elastic shaft is provided.
A nonlinear hardening material with equivalent stress & = Y+ A(£,)", where 4 and n are constants,
Y is the yield strength, and &, is the equivalent plastic strain, is employed. Tresca yield criterion is
adopted, and the operating conditions (interference and rotation) are assumed to induce radial and
hoop stresses which lie in the second quadrant of the Tresca hexagon. Quasi-analytical solutions
are deduced for the radial distributions of plastic hoop strain as well as radial and hoop stresses for
n=1,1/2,1/3 and 1/4. Validity domains of the solutions developed are determined and favourably
compared to those of other investigators. Conditions for elastic shakedown limit are also discussed.
In addition, an approximate solution is developed, which can be advantageously employed in the
range 0 < n < 1. Accuracy of the approximate solution in comparison with corresponding exact
solutions is examined and found to be fairly good. Significance of results obtained as an aid to
designers of shrink-fitted assemblies is also discussed.

INTRODUCTION

Shrink fits are widely used in mechanical constructions since they are capable of transmitting
high torques at low production cost. The elastic design of a shrink-fitted disc is traditionally
based upon Lamé’s solution of thick-walled tubes. However, a purely elastic design does
not fully utilize the strength of the disc. Hence, the concept of elastoplastic design is
employed to overcome this shortcoming. Lundberg (1944) treated a nonrotating shrink fit
assuming elastic—perfectly plastic material behaviour which follows the von Mises yield
criterion. The resulting solution is employed in the German standards DIN 7190, via a
large number of design charts. In order to provide solutions simpler than those by Lundberg,
Kollmann (1978, 1981, 1984) treated shrink fits, both at rest and rotating, using the same
basic assumptions as Lundberg, but employing Tresca’s yield criterion instead of von
Mises’. This procedure yielded relatively simpler design formulae.

Both Lundberg’s and Kollmann’s solutions neglect strain hardening of the disc
material. Gamer (1986, 1987) considered a disc material with elastic linear strain hardening
behaviour and obtained analytical expressions for stresses and strains in a rotating shrink-
fit assuming Tresca’s yield criterion.

In this paper, elastoplastic analysis of rotating shrink fits is provided for a general
nonlinear hardening material. The material law employed is: ¢ = Y+ A(§,)", where 7, &,
are the effective stress and plastic strain, respectively, Y is an initial yield stress and 4, n
are material constants characterizing the state of hardening with 0 <n <1, and n=1
corresponding to linear hardening. Perfect plasticity corresponds to 4 = 0, and purely
elastic behaviour to 4 — oco. The formulation of the problem is similar to the procedures
followed by Megahed (1990, 1991), in which thick tubes and spheres under internal pressure
are treated. This method of analysis has recently been adopted by Gamer (1991) to obtain
general quasi-analytical solutions of elastoplastic problems with spherical and cylindrical
symmetry and nonlinear hardening characteristics.

In common with previous investigations (Kollmann, 1981 ; Gamer, 1986, 1987), a solid
elastic shaft is considered herein and the elastic moduli E, Poisson’s ratios v and densities
p are assumed to be equal for both shaft and disc. Furthermore, a state of plane stress is
considered in both shaft and disc.
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PROBLEM FORMULATION

Consider a thin flat disc, with inner radius ¢ and outer radius b, shrunk onto a solid
shaft of outer radius a+4. The disc has a free outer boundary. The shaft-disc assembly
rotates with angular speed w. The problem configuration is illustrated in Fig. 1, but prior
to assemblage. The stress components are oy, 6,, o, (= 0), and strain components are ¢, &
and ¢,. It is assumed that the loading conditions é and w are chosen such that o, > 0 and
g, €0, i.e. the stress state lies in the second quadrant of stress space, where the Tresca
effective stress ¢ = 64— o,. Total strains are decomposed into elastic and plastic components.
Strain—displacement—stress relations in the disc are:

du 1
= - =—[g.— p
& dr E [0', Vo'g] + &, (la)
u 1
gy = ;=E[O'9—v0',]+88, (1b)
where u is the radial displacement. For the Tresca yield criterion and the associated flow
rule, incompressibility of plastic strains requires that gf/e? = —1 and ¢f = 0. The equiv-
alence of plastic work (o€}, = 6¢,) yields &, = ) = —¢P.

Inversion of eqn (1) yields stresses in terms of total and plastic strains as:

E |d

O'r‘:lm_?[ﬁ +V§+(1’V)SS:]3 (23)
E d

U”=1—v2[g+vd~:—(l-V)sg]‘ )

The equilibrium condition in the radial direction is:

do, o,—0y 5
dr+ ; +po’r =0, 3)

Substitution of eqns (2) into eqn (3) yields the following differential equation:

2 —_
du 1du u I:% 42 & + p(1—v) wzr], @

wtre =0 8E

whose solution can be readily obtained by double integration. After some manipulations,
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Fig. 1. Rotating shrink-fit configuration prior to assemblage.
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radial distributions of a,, 64 and u in the disc are obtained as:

EA BE 1 34v ., "&b
G,—m—mp—prr—EJ;7dr, (53.)
JEL v s g )
Oy = 0, 1+ r + 4 P(l)r 85’ (
—v)r 2B 1
= (50)

14v
where A4, B are integration constants.
Considering the elastic shaft, and following the same procedure as above, yields the

following radial distributions of ,, 6y and ufor 0 < r € a:

EC DE 1 3+v

il S i R B (62)
2DE 1 1—v
0'9=O’,+mr—2+ 4 pa)r (6b)
_(-v) 2D 1

rlo,+ipo0®r’]+ 5 (6¢)

E 1+vr’
where C and D are integration constants.

The boundary conditions necessary to determine the constants 4, B, C and D are:
() u=0atr=0,
(2) a, (r = a) for the disc = o, (r = a) for the shaft,
(3) g, =0atr=5,
(4) 6 = u (r = a) for the disc —u(r = a) for the shaft.

Applying the above conditions yields the following:

EA E5a 3 + 2,2
T——v 2b2 b +EJ —dr, (73)
EB Eéa
1+v  2° (7b)
EC FA EB 1
(7¢)

T—v 1—v 14va®
D=0, (7d)

where c is the radius of the elastic plastic front, and a < ¢ < b.
Hence, the final expressions for a,, g, and u in the disc are obtained as:

6 /Y = g(zo—zmm _ZyZ)+ (-], (8)
0o)/Y = 0,|]Y+ZA+Q*Z—, (8b)
o= = ot ®
where
Ee}
V=" ©

SAS 30:6-8
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is a normalized plastic hoop strain,
Z=afr, Z, = a*/b*, Z =a*/c’. (10a,b,¢)

Note that Z = 1 at the shaft—disc interface r = a. The integrals / and I are given accordingly
by:

1%y - L[7y
v - | ¥ 11a,b
I 2£ ZdZ, I 2£ ZdZ, (11a,b)
and
Eb
A=, @ =iG+npeiblY, (12a,b)
~ 2(1—v)
2 _ 2 12
Q e Z,Q2, (12¢)

are dimensionless measures of shrink fit and centrifugal forces due to rotation, respectively.
At the elastoplastic front r = ¢, the effective stress § = 6y—0, = Y and ¢ = 0. Hence,
from eqn (8b) the plastic front is related to applied loads by :

Z*—ZIA+Q%A =0. (13)
Solution of the quadratic equation (13) yields:

- 1 1 4‘:-2'*
Z_ﬂiﬂ 1—-4Q°A. (14a)

The positive sign should be used so that the plastic front radius ¢ = a/\/ Z increases
with rotation. For nonrotating shrink-fits (Q? = 0), eqn (14a) reduces to

o1
Z= (14b)

Note that eqn (14a) yields the elastoplastic front for any combination of A and Q2, and is
obtained without specifying any hardening law for the disc material. Moreover, for the
above solution to be valid, the discriminant (1 —4€Q2A) should be non-negative, i.c.

40°A < 1, (15)

which represents the portion of the 2 versus A space under the hyperbola 4Q2A = 1. This
condition will be further examined later.

HARDENING LAW

A general nonlinear hardening law that has proved to be most relevant in the analysis
of small strain plasticity problems is:

G=Y+A@E), (16)

where A and » are material constants. This particular hardening law is preferred to other
nonlinear hardening representations such as the Ramborg-Osgood law (¢ = 6/E+(6/K)"'™)
due to its consistency with the observed smooth transition between elastic and plastic states.
In addition, the above hardening law allows analytical treatment of an important class of
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elastoplastic problems as iltustrated by Megahed (1990, 1991), Megahed and Abbas (1991)
and Abol-Liel et al. (1992). Equation (16) can be rewritten as:

& = Y[1+ Hy", (17a)

where H is a hardening parameter defined as:
A
H= ?(Y/E)". (17b)

A physical interpretation of the hardening parameter H is that it represents the rise in flow
stress at = 1 above the initial yield value Y. Note that y = 1 corresponds to &, = Y/E,
i.e. the elastic strain at yield.

Values of H and » have been collected by Megahed (1991) and Rees (1987a,b) who
both concluded that n ranges from 0.1 to about 0.7, with n = 1/3 as characteristic of many
engineering alloys. The value of H was found to be always less than unity and often less
than 0.5 for the majority of engineering alloys. Clearly, perfect plasticity corresponds to
H = 0 and purely elastic behaviour to H — 0.

ANALYTICAL SOLUTION FOR PLASTIC HOOP STRAIN
The effective Tresca stress & = 6,— o, can be obtained from eqns (8a, b) as:
GlY = ZA+ Q% Z—y. (18)
Comparison between expressions of ¢ obtained from eqns (17a) and (18) yields:
HY"+y = ZA+Q?/Z 1. (192)
The right-hand side of eqn (19a) is a function of radial position Z and the loading parameters
A and Q2. The expression ZA +Q?/Z — 1 is denoted by F(Z). Therefore, eqn (19a) is written
simply as:
Hy"+y = F. (19b)
Clearly, F(Z) > 0 within the elastoplastic zone since y > 0 for Z< Z < 1,and F(Z) =0
within the outer elastic zone (Z, < Z < Z—)' For perfectly plastic behaviour, H = 0 and ¢
is obtained from eqn (19a) as: ¢ = ZA+Q?/Z—1.
The above nonlinear equation can be solved analytically for n = 1, 1/2, 1/3 and 1/4 as

reported by Megahed (1990, 1991). Radial distributions of y corresponding to the above
four values of n are given in Table 1.

Table 1. Analytical solutions for normalized hoop strain y

n Distribution of y, F = AZ+Q?/Z—1 Eqn no.
1 ¥ =F/(H+1) (20
1/2 w=F+5{2—2—H72\/HW @n
1/3 ¥ = F+ H[}/4H |27+ F2 = F/2)'* — H[}\/4H* |21+ F* + F[2] " 22)
1/4 ¥ =F+K-K/IHYK* -1 (23a)

2 2
where K= T (/T B+ HA - T JERHA - HTD @)
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The integral I = %f,’ W/Z dZ appearing in eqn (8a) can be evaluated analytically for
the case of linear hardening » = 1 only. For n # 1, resort is made to numerical integration.
For the case of linear hardening (n = 1), the expression for the integral I'is:

I=5e (@~ DA+Q}(1-1/2)~In 2] (24)

I is obtained by substituting Z from eqn (14a) into eqn (24). Once  and I are determined,
stresses can be readily calculated from eqns (8a,b). In the elastic region (¢ < r < b), note
that / = Tand ¢ = 0.

The procedure employed in the above analysis assumes a rather hypothetical sequence
of loading in which both interference (A) and rotation (Q?) loads are applied simultaneously
and proportionally. In practice, the disc is first shrunk to the shaft and rotation is applied
subsequently. It can be easily shown that as long as the stress states in the elastoplastic
zone are confined to the second quadrant of the Tresca hexagon (6 =o0y—0,,
gh/e? = —1), the final states of stress and plastic strain are the same for the above two
sequences of loading. The conditions required for the above limitation to be satisfied are
discussed subsequently.

RANGE OF VALIDITY

In order to use the above results correctly, their range of validity has to be determined
in terms of the two loading parameters A and Q> To generate the required ranges it is
necessary to determine the conditions for:

(1) Transition from fully elastic behaviour to partially plastic behaviour. This occurs when
Z=1.

(2) Transition from partially plastic behaviour to fully plastic behaviour. This occurs when
Z - Z 0-

(3) Within the ranges set out by the above two conditions, the state of stress at any point
lying within Z < Z < 1 must be in the second quadrant of the Tresca hexagon, where
d is equal to 6y—o0, and &, to &}.

Substituting Z = 1 into eqn (14a) and using eqn (12) yield :

sy 3ty (1=8)
20y 2z, -

25

Hence, the condition for transition from purely elastic to elastoplastic behaviour occurs
when the equality sign holds in (25), as shown in Fig. 2 for a disc with b/a = 2. Note that
for a nonrotating shrink fit (Q? = 0), the above transition occurs when A = 1. Fully elastic
behaviour is obtained for values of Q? violating eqn (25). For a purely elastic rotating
shrink-fit, interference between shaft and disc is lost when o,(r = a) becomes equal to zero.
It can be easily shown that the lost interference condition reads

Q* = AJ2. (26)

Hence, for values of Q? greater than A/2, the shrink-fit is incapable of transmitting any
torque.
It is interesting to note that the two lines specified by eqns (25), (26) intersect at:

27)



Elastoplastic analysis of rotating discs 757

0.5~

P=0 =~ o, (©)=0
t A
041 i
I '
! 21 c=b
sk - ®© =4
' L“@ 3+v B
@ | c=a @ 0=y 7 04
2
02|~ : @ 0*=i0-5%54A
! 2,342 oy o
] @ Q A1) II ¥ A]
ol
Elastic | Blastio-plastic A=1/Z,
behaviour behaviour
| I !
0 1 2 3 4
A

Fig. 2. Validity domain for a disc with b/a = 2.

which is exactly the same value as Q? causing initial yield in a freely rotating annular disc
(Benham and Crawford, 1988).

Combinations of Q” and A to the right of the line specified by equality (25) induce
partial plastification in the disc. Fully plastic disc is obtained when the plastic front ¢ = b,
i.e. Z = Z,in eqn (14a), which yields:

3+v

Note that for a nonrotating shrink-fit (Q* = 0) the value of A causing full disc plastification
isA=1/Z,.

Within the partial plasticization region lying between the two lines specified by eqns
(25) and (28), the proposed formulation is correct provided the loading points remain
within the second quadrant of the Tresca hexagon, Fig. 3, in which ¢ = 65,~0,, 6, > 0
and ¢, < 0 for a < r < ¢. Inspection of radial distributions of o, and g, within the elasto-
plastic zone shows that the corresponding sufficient conditions are: o,{r = ¢) <0 and
as(r = a) > 0. The condition o,(r = ¢) < 0 can be evaluated irrespective of the hardening
characteristics of the material. From eqn (8a}, it can be seen that 4,(r = ¢) < 0, when

= (29)

2
9\2

O’QfY

l alY

— — Initial
= Subsecquent

Fig. 3. Admissible stress domain.
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which, upon using eqn (14a), reduces to

1 1—v
2L ] o ZoA )
Q 2( 3+vZ° ) (30)

It is worth noting that the line described by equality (30) intersects the two lines obtained
from equality (25) and eqn (26) at Q% = Q.

The condition of a4(r = a) > 0 can be evaluated analytically for the cases of perfect
plasticity and linear hardening. For perfect plasticity (H =0), eqn (20) yields
¥ = ZA+(Q%Z)—1, whereas eqn (11b) gives

1A, 1 i} }
1=5[Q (1——Z:>—A(1—Z)—an]

Atr =a(Z = 1), I =0 and o, can be obtained from eqn (8a) and then substituted into eqn
(8b) to give the condition

A2
oo(r = @)Y = (Qz— %)(1—zo)+ %(1-2‘)—%(1— %>+%1n Z+1>0. (31)

Substituting for ? from (12c) and Z from eqn (14a), a nonlinear relation between A
and Q? is readily obtained. Condition (31) represents a new limitation to the validity
domain, as shown in Fig. 4 for a disc with b/a = 4. It is obvious that the validity domain has
been considerably reduced upon imposing the condition 6,(r = a) = 0. For a nonrotating
shrink-fit (Q? = 0, Z = 1/A), the above equality reduces to ZyA+ 1 = In A, which, for the
case of Fig. 4 (Z, = a*/b* = 1/16), yields A = 3.35. Note that the condition 64(r = a) > 0
1s satisfied at all points of the validity domain of Fig. 2, for which b/a = 2.

Similarly, for linear hardening (n = 1, H # 0), the condition that ¢4(r = a) = 0 reads

, A 1 a1 _
Go(r = a)|Y = (Q —§>(1—zo)+im|:(1—zm—g <l—§)+ln z]

1 N
. (HA+O? >
o HATQPHAD) >0, (32)

which is seen to reduce to condition (31) for H = 0. For other values of n, however, this
condition may be checked only after numerical evaluation of the integrals 7 and 7. Note

05 I
1
o4l h : v
: 1 Shakedown
s 1 limit \
03+ \
] ! '
02 1 ! \
1 \
02 :/® 1 \
) ! V) tay(a)=0 ForH=0 \\
1
0.1 : i \
I ! !
| ! \\
L L 1 i | ] | 4
0 2 4 6 8 10 12 14 16

A
Fig. 4. Validity domain for a disc with b/a = 4.
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that Gamer (1986) did not take this condition into account when constructing the domain
of validity.

Simple calculations can show that the condition prescribed by eqn (15) does not
represent a new limitation to the validity domain developed above since the hyperbola
Q?A = 1/4 can be shown not to intersect the validity domain at any point. This may be
easily checked by substituting the coordinates of the most distant point from the origin
(e.g. point 4 of Fig. 2) into eqn (15), i.e.

34v 5 34v
=2z, ™ ==

A
thus providing v?+2v+1 > 0, which is always satisfied.

ELASTIC UNLOADING

The shaft-disc assembly will be subjected to consecutive rotation-stand still cycles
during its operation and therefore investigation of the unioading behaviour becomes impor-
tant to designers. Of particular interest is the condition of elastic shakedown, which guaran-
tees that no further plastic deformation is developed during unloading-reloading cycles
subsequent to initial loading. Determination of the shakedown limit depends upon the
changes which take place in the size, shape and centre coordinates of the yield surface as a
result of plastic deformation induced during initial loading. These changes may be modelled
by isotropic hardening (Hill, 1950), kinematic hardening (Prager, 1956) or suitable com-
binations of both rules. A full analysis of the unloading behaviour taking into account the
changes in the yield surface is beyond the scope of the present work. Shakedown is analysed
here assuming a perfectly plastic material behaviour (H = 0).

Consider a disc operating in the elastoplastic regime under prescribed values of A and
Q? lying within the validity region discussed earlier. These operating conditions induce a
stress state such as that indicated by point A illustrated on the Tresca hexagon shown in
Fig. 3. Reduction of the speed of rotation to zero and assuming elastic unloading poses a
disc-shaft assembly problem which can be treated in a manner similar to that of the loading
problem—but a lot simpler—to yield the following distribution of changes in radial and
hoop stresses :

Ac,|Y = —Q*(1—-2Z,/2), (33a)
Acy)Y = Ao,]Y—Q?/Z. (33b)
Note that both Ao, and Ag, are negative and that the slope of the elastic unloading path is
always greater than unity. Hence, unloading takes place along paths similar to the line

indicated by AB in Fig. 3. Consider the most severely stressed point in the disc,i.e. atr = a
(Z = 1). The corresponding condition of pure elastic unloading is:

dO(Z=1)+Ac(Z=1) < -7, (34)

where ¢!”(Z = 1) refers to the radial stress following the loading phase. For perfectly
plastic behaviour, ¢{”(Z = 1) can be expressed in terms of A and Q? by substitution from
eqns (14a) and (24) into eqn (8a). After some manipulations, the shakedown condition is
obtained as:

A <14+ /1—4Q%A] exp 2+ Z,A— Q% — /1 —4Q%A]. (35)

GENERAL APPROXIMATE SOLUTION

An approximate solution can be obtained for the distribution of plastic hoop strain
which is valid for any value of 0 < n < 1. For H < 1, the nonlinear term Hy" in eqn (19)
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can be neglected and a first approximation for ¥ is  ~ ZA+Q?/Z— 1, which is the perfect
plasticity solution. Back substitution of this first approximation into the nonlinear term
Hy" of eqn (19) yields:

Y~ (ZA+QZ—1)—H(ZA+Q*/Z—1)". (36)

The second term represents the inhibition of plastic strain due to hardening, while the first

term is the perfect plasticity solution. Inspection ofA eqn (36) indicates that th_e normalized

hoop strain i = 0 at two values of Z; when ZA+Q?/Z—1 =0, i.e. at Z = Z, and also at
Z = Z*, where

Z¥A+Q?/Z*—1 = HYU-", (37a)

which yields

Z*

1 Hl/(l—n) 1 Hl/(1~n) QZA
s + \/—4 (37b)

24 24 (I+HT-my2

It can be shown that 1 > Z* > Z, which means that the proposed approximate solution
yields negative plastic hoop strain in the zone Z < Z < Z*. This error in the approximate
solution appears to be greater near the plastic front when plastic strain is quite small. Since
negative strains cannot be permitted, an exact statement of the approximate solution
becomes :

Y = (ZA+Q}Z—-1)—HZA+QYZ-1)", Z*<Z <1, (38a)
y=0 Z<Z<Z* (38b)

NUMERICAL RESULTS AND DISCUSSION

Figure 5 depicts the exact and approximate distributions of: (a) radial and hoop
stresses and (b) plastic hoop strain as function of radial distance for a linear hardening
(n=1, H=0.2), shrink-fitted rotating disc with b/a = 2 and the operating conditions
Q° = 0.4and A = 3.0. [t is clear from Fig. 5(a) that the hoop stress is positive and increases
in the plastic zone (a < r < ¢) and decreases in the elastic zone (¢ < r < b). The radial stress
is negative and approaches zero at the outer boundary r = b. When Q? =0, i.e. a non-
rotating shrink-fitted disc, both stresses maintain the same distributions, though at lower
magnitudes. It is also clear from Fig. 5(b) that rotation has the effect of increasing the
radius of the plastic zone. The plastic hoop strain is seen to be highest at the inner boundary
(r = @). Moreover, within the plastic zone (¢ < r < ¢), the plastic hoop strain in the rotating
disc is higher than in the nonrotating disc.

Figure 5 also shows that the approximate solution is generally in fairly good agreement
with the exact solution, except probably at the inner boundary (r = a), where discernible
differences are seen particularly in hoop stress and plastic strain. These differences diminish
with increasing r and eventually vanish as r approaches the plastic front. Note that for
n=1 and H <1, the exact and approximate plastic front radii coincide, i.e.
(c= a/\/?) = (c*= a/\/?), as may be checked from eqns (14a) and (37b). This is not
the case, however, for other values of n, as will be shown subsequently.

Figure 6 shows the distributions of : (a) radial and hoop stresses and (b) plastic hoop
strain in the radial direction for the same operating conditions of Fig. 5, but for a nonlinear
hardening disc (n =1/2, H=0.2), b/a =2 employing both exact and approximate
solutions. The stresses and plastic hoop strain distributions are, in general, similar to those
obtained for the linear-hardening disc. The exact and approximate solutions are still in
fairly good agreement, although they differ from those of Fig. 5. Whereas the exact plastic
front radius, eqn (14a), does not depend on the hardening characteristics (n, H) of the disc
material, the approximate radius, eqn (37b), does depend on n and H and has a lower value
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1.0 1.2 1.4 1.6 1.8 2.0
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Fig. 5. Exact and approximate radial distribution of (a) radial and hoop stresses, and (b) plastic
hoop strain for rotating and nonrotating discs with b/fa =2, n = 1.

c* = a/ﬁ. Effectively, the error in the approximate solution appears to be greater, yet
acceptable, near the plastic front, particularly for the hoop stress and plastic strain.

Figures 7 and 8 depict the radial and hoop stresses and the plastic hoop strain for a
nonlinear hardening disc with n = 1/3 and n = 1/4, respectively. Other operating conditions
and material parameters have the same values used to produce Figs 5 and 6. The results
are seen to be qualitatively similar to those of Fig. 6, but the errors near the plastic front
seem to increase with decreasing n. At the inner boundary, however, where the stresses and
strains assume their highest values, excellent agreement between the exact and approximate
solutions is generally obtained.

A better understanding of the above comparisons between the exact and approximate
solutions can be gained by critical examination of eqn (37b) identifying the approximate
plastic front radius, Z*. The value of Z* approaches the exact value, Z of eqn (14a), as
H''=" approaches zero. The contours of H'"'~™ are illustrated in Fig. 9 in a plot of H
versus n. It is clear that H'/'~" = 0, for which Z* = Z, when H = 0 (perfect plasticity) or
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Fig. 7. Exact and approximate radial distribution of (a) radial and hoop stresses, and (b) plastic
hoop strain for rotating and nonrotating discs with b/a = 2, n = 1/3.

Normalized radial distance

Exact solution

— — — -Approx. solution

A=3.0 H=0.2 n=7

0%=0.4

./
Non-rotating
] |

0 1.2 1.4 1.6 1.8 2.0

Normalized radial distance

L

HIAVH-1Aady 'S W PUB GIHVOIIN N I



Elastoplastic analysis of rotating discs 763

()

1.5 Q%=0.4
- 10 >/__".-.\
@ Te
g /\_
«w 0.5 .
° Non-rotating
;5 0
E / g,
2 -0.5 Exact solution

— — — - Approx. solution

A=3.0 H=0.2 n=]
s 1 ] ] 1 ]

1.0 1.2 1.4 1.6 1.8 2.0

Normalized radial distance

(®

0
©

Exact solution

- — — -Approx. solution

—
W

A=3.0 H=0.2 n=;

—
(=)

o
(73

0%=0.4

Normalized plastic strain

Pt
Non-rotating

0 1 | ]
10 1.2 14 1.6 1.8 20

Normalized radial distance

Fig. 8. Exact and approximate radial distribution of (a) radial and hoop stresses, and (b) plastic
hoop strain for rotating and nonrotating disc with b/a = 2, n = 1/4.

05 HIIT" =02 010050010
0.4}
03~
0.2

0.1

1 1 !
0 02 04 0.6 0.8 1.0

n

Fig. 9. Contours of H"'~" used to assess accuracy of the approximate solution.



764 M. M. MEGaAHED and M. S. ABDEL-KADER

— H =0 (Perfect plasticity)

0.7
= — - H=01 ]
b/a % Hardening
06k n =3 —- H=02 materials:n:al
—-—- H=03

P \

04 o 4 o7 204
g Ve N -—
o2 //0 /// /;'/// 04
o3 % N 0.6
w. - .
77 . 0.6

02 // // - -

// P> _\06

7 A
O'IF ,’/// 0.6

) P
e
s, 7
1 I/ A
[} 1 2 3 4
A

Fig. 10. Effect of hardening parameter H on contours of interference pressure for a disc with b/a = 2.

n = 1 (linear hardening) (cf. Fig. S for the latter case). As H becomes larger and n becomes
smaller, H"/('~" increases and Z* begins to differ appreciably from Z, as may be seen from
Figs 6-8 ; as n changes from 1/2, Fig. 6, to 1/4, Fig. 8, the differences between the exact and
approximate solutions become larger.

Figure 10 illustrates the contours of the normalized interference pressure
p = —a,(r = a)]Y as affected by the operating conditions (Q?, A) for a disc with b/a = 2.
Obviously, such information is invaluable to designers, since it assists in determining the
reduction in load-carrying capacity of a shrink-fit due to rotation a priori. The sensitivity
of the pressure contours to changes in the hardening parameter H has also been studied,
and the results are included in Fig. 10 for H = 0 (perfect plasticity), 0.1,0.2,0.3and » = 1/3.
As H increases, less reduction in interference pressure due to rotation is effected.

Figure 11 shows the contours of the interference pressure for a disc with b/a = 3 and
H =0 (perfect plasticity). Note the lowest contour (P = 1), which implies that
go(r = a) =0, eqn (31). As such, it represents again a limitation to the validity domain,
since operating conditions below that contour represent stress states in the third quadrant
of Tresca hexagon.

Figure 12 presents a similar set of results showing contours of P for a disc with b/a = 4
and H = 0. Sensitivity, to increasing values of the hardening parameter H, of the contours
corresponding to the limitation g,(r = a) = 0 has also been investigated, and the results are

Fig. 11. Contours of interference pressure for a disc with b/a =3, H = 0.
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02

Fig. 12. Contours of interference pressure for a disc with b/a = 4.

shown in Fig. 12; as H increases, this limitation relaxes slightly, and the validity domain
increases correspondingly. In obtaining the above results A, Q% Z,, H, n needed to be
specified. In addition, v = 0.3 was assumed.

The shakedown condition has been numerically evaluated for discs with b/a = 2, 3 and
4. The results show that elastic shakedown behaviour encloses the whole validity region for
b/a = 2, while for b/a = 3 and b/a = 4 shakedown regions constitute only part of the validity
region, as shown in Figs 11, 4, respectively. It is observed that as b/a becomes larger the
shakedown region occupies a smaller portion of the elastoplastic zone. This result is to be
expected, since centrifugal stresses become more significant as the mass of the disc increases.

It is worth noting that the quasi-analytical solutions developed here were limited to
four specific values of the material hardening exponent (n = 1, 1/2, 1/3, 1/4), whereas the
approximate solution can be used advantageously in the range 0 < » < 1. Cyclic behaviour
of shrink-fitted assemblies operating beyond the elastic shakedown limit is an interesting
problem which deserves further elaboration in a future work. Also, analysis of shrink-fitted
discs, with von Mises yield criterion adopted, can be attempted. Resort to numerical
methods is anticipated in this case.
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